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ABSTRACT

This report contains an investigation of "mode interaction" instabilities

of aircraft. "Mode interaction" refers to coupling between an elastic mode

and a rigid body mode of the free system. Three ratter general airframe

configurations are analyzed in detail. It is shown that systems which tend

toward steady state divergence are particularly susceptible to mode inter-

action. Also, that aerodynamic damping terms can have a destabilizing

effect upon a free system. The analyses show that aeroelastic systems which

possess no finite frequency elastic mode can be susceptible to a finite

frequency instability. Computer studies of several different airframe

configurations are discussed. An appendix to the report contains stability

charts for an aircraft having two rigid body modes and one elastic mode.
PU2,.Ic..'TION RVI'V3I

This technical dociatentary report has been reviewed and is approved.

Chief, Control Criteria Branch
Flight Control Division
AF Flight Dynamics Laboratory
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1. INTRODUCTION

The Investigation of reference I, titled *Optimum Structural

Representation In Aeroelastic Analyses* was Initiated as a study of

the effects of elastic modes of an aeroelastic system on the low

frequency response of the system. The results of that investigation

provided a straight forward method of representing a system in terms

of a few of Its normal coordinates and the *residual flexibility, of

all higher modes which proved to be an accurate approximation of the

aeroelastic system for the prediction of Its dynamic behavior In the

frequency band from zero through the frequencies of the normal modes

explicitly Included in the representation.

This method of structural representation was shown to be valid

In all configurations studied except in the case of "mode Interaction*

where no conclusions were drawn. "Mode interaetIon" Is defined as a

condition of potential or incipient aeroelastic Instability Involving

one elastic mode and one rigid body mode of the free system.

The investigation reported hero was undertaken to provide some

insight Into the mechanism of "mode interaction" and to provide a

means of predicting the susceptibility of a given configuration to

this phenomenon. Since the "mode interaction' phenomenon Is definable

in terms of a potential aeroelastic instability, this study was aimed

particularly at the prediction and understanding of the Instability

rather than at prediction of the response at a subcritical speed*

Manuscript released by authors August 1963 for publication as an

ASD Technical Documentary Report.



The prediction of critical velocity (flutter speed) and the system

response at a subcritical speed is certainly a solvable problem for any

system. Many standard references on flutter analysis and aeroelasticity

present general methods which are comprehensive In their potential

application* Reference I presents equations of motion of an aeroelastic

system which are an example of a completely comprehensive analysis.

Equation (3.69) of reference I Is

[y ~ ~ ~ ~ X: +~ - F~i1(l 'aýI ) (~ [ ~T{ t ~ ) (1-1)

wheres

[YKJ Is a diagonal matrix of the generalized mass and stiffness

of the normal modes* - [KK] - C •mK]

S I} is the vector of normal coordinate deflections.

[ Is the matrix of normal mode shapes or the "modal matrix"

of physical coordinates m. •1%] is a square matrix.

[Q r Is the aerodynamic influence coefficient matrix in the

physical coordinates m, defined by {F ml} [Qmm] {Yrn}

E Xm° Is the residual flexibility matrix or a matrix defining

the stiffness properties of the system which are not

Included In the generalized stiffnesses <KK.

{F(a)} Is a vector of additional externally applied forces.

Equation (I-i) can provide a rigorous statement of the equations of

motion of a system if all elastic modes of the system are Included in

the K coordinates and at least an excellent approximation of the system

equations when the K coordinates Include a reasonable number of the

lowest modes of the system.

2



Equation (1-1) Is useful in providing an accurate prediction of

the dynamic response of a complicated system. Such predictions, how-

ever, do not always give an understanding of the basic mechanism of

the phenomena being studied. Thus, such an equation can provide means

of discovering that a given aircraft design has unsatisfactory stabil-

ity and control characteristics, but unless the basic mechanism of the

Instability Is understood by the designer, he will be unable to foresee

which design changes result In improvement. The systems analysed in

this study were selected so as to throw light on the basic mechanisms

of mode Interaction. In order to Illustrate these mechanisms clearly,

it was often found useful to make simplifying assumptions. Therefore

the results of this study apply to more definite stability and control

problems than does equation (1-I), which Is very general.

Three analyses are made in this study. These analyses consider

the following systems:

I. (Section rl) Analysis of an airframe represented by two rigid

body modes, one elastic mode, and the "residual flexibility"

of all hiyher modes. The chief simplifying assumption of this

analysis is the omission of all damping terms from the equa-

tions of motion of the system.

2. (Section 1II) Analysis of an airframe consisting of a simple

airfoil flexibly attached to a rigid fuselage. In addition to

the assumption that the fuselage is rigid, It is also assumed

that the airfoil has no mass*

3. (Section TV) Analysis of an airframe having two rigid body modes

and one elastic mode. This analysis omits all consideration of

3



residual flexibility of the higher modes of the system.

Since this study Is aimed particularly at the supersonic and high

subsonic velocity regime, aerodynamic lag functions were omitted In all

analyses.



IIo ANALYSIS OF AN AIRFRAME REPRESENTED BY TWAO RIGID BODY MODES,
ONE ELASTIC MODE, AND THE "RESIDUAL. FLEXIBILITY"

OF ALL HIGHER MODES

The "residual flexibility" approximation, derived in reference I,

In generalized modal analyses provides a means of including all stiffness

properties of a system In the analyses while the mass Is represented by

the generalized mass of a selected number of lower-frequency normal modes.

Advantages In simplicity of solution of the conventional truncated modal

approach are obtained when the coordinate velocity dependent terms are

omitted. The omission of these damping terms In the equations of motion

will be detrimental to the accuracy of the predicted stability boundaries,

but this analysis will be shown to be useful by providing some insight

Into the stability problems of more complex structures.

The airframe configuration considered in this analysis will be a

general one defined only by the following parameters.

m v the total mass of the system.

r - the radius of gyration of the system (then mr2  s the

pitching mass moment of Inertia of the airframe about

its cog.)*

r2m the generalized mass of the first elastic mode of the

system. Thus re Is just a radius of gyration obtained

by dividing the generalized mass of the first elastic

mode by the total mass, and taking the square root.

w 0 •the undamped natural frequency of the first elastic mode.

[*hr] the modal matrix defining the mode shapes at the h (plunge)
Ler. coordinates and the 0 (pitch) coordinates of the system

5



for the r mrodes included. 3 modes are Included, the

zero frequency plunge mode (mode I), the zero frequency

pitch mode (mode 2) and the first elastic mode (mode 3).

Xhh l~h T

----I--- -the flexibility matrix of the complete free systemLxh Xe/ when the zero frequency modes are restrained to zero

displacement, partitioned by h and 0 coordinates.

hh I Oh
the "residual flexibility" matrix, of all elastic modes

Oh I X00 higher than the first, partitioned by h and 0 coordinates.

This matrix actually is not needed to define the system

since (from a special case of equation (3-21) of refer-

ence I) it Is determined from system parameters listed

above by the equationX- X"i ]- [.' r]"lr]
where X11 Is the flexibility matrix with the zero fre-

quency modes restrained.

The aerodynamic forces included In this analysis will be defined by

the following partitioned matrix equation

F h 1I - ( I l-h
weq q i tIhe -e1

where q is the dynamic pressure I P V2

The equations of motion of the aeroelastic system can be written by

a process of partitioning equation (I-I). The quantity - 2 In equation

(1-I) Is replaced by s2 in equation (11-2), since we look for solutions of

the equations of motion having time dependence of the form et, where s

may be complex.

6
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In order to shorten subsequent matrix equations we shall define an

"Naeroelastlc aerodynamic Influence coefficient matrix" [Qhe] as follows

[QhOl {L1 [Qhe0] [X 8 }' [Qhe] (.4

It is well to note that [Qhe] Is a function of the dynamic pressure

(q) and the number of elastic modes explicitly Included in the analysis

(in this case I mode).

The equations of motion of equation (11-3) may be further simplified

by recognizing that the modal column {feI} , the pitching slope deflec-

tions in the rigid plunge mode, Is equal to zero, and that the modal col-

umns Oh} and f-21 .the plunge deflections in the rigid plunge mode

and the pitch slopes In the rigid pitch mode, are equal to {I} , a

column of ones, due to normalization. The equations of motion now may

be written in the formT "T
ms2 il q [~e ~- q lj h 310

o- o 2•r-s2 .{ } q [heo]{ . {.h2 q [•h8] {,,J*,

0 'Lh } q [~hol ý} Mr. s +we ý{h 31T q [Qhe] {%l 3
(11-5)

In an effort to obtain a solution in terms of parameters for which

engineers are more likely to have Intuitive judgment than for the general-

ized modal parameters of equation (11-5), we will Introduce the concepts

of steady-state elastic divergence and short period mode frequency.

Conventionally the short period mode frequency Is the pitching fre-

quency exhibited by the rigid system when aerodynamic forces are Included.



For this analysis we will define the "aeroelastic short period mode

frequency" (o 0*) to be similar to the conventional definition except

that the system, Instead of being rigid, will Include the "residual

flexibility" of all elastic modes higher than the first. This fre-

quency can be obtained from equation (11-5) by letting C3 be zero,

then assuming harmonic motion.

10 -'O (I , } q [ ~ e t }(11-6)

Steady-state elastic divergence is conventionally defined for a

supported system as that aeroelastic instability which can occur at

zero frequency and is therefore Independent of the mass of the system.

This simple definition cannot be applied to a free system because in

this case:

I. Other potential zero-frequency Instablilties exist which

are not aeroelastlc In nature.

2. The mass distribution of a free system must be considered.

The only reasonable definition for steady-state elastic divergence of

a free system is available through the description of the elasticity

of the str'.cture when restraints are placed on the zero-frequency

normal modes of the system. In this case steady-state divergence can

be defined by the singularity of the matrix [I1 "q [Qmml [XmmJ 1

where q I[QM Is the matrix of aerodynaic Influence coefficients and

[XMI is the deflection influence coefficient matrix of the structure

when the zero-frequency modes are restrained. In this analysis elastic

divergence Is determ ined by the vanishing of the determinant

[I] q [Qhe] EXh]



which may be expanded as follows In the parameter q

[ " q [Qh 0][Xh0 h I - 0 1q+ D2 q - . . . . . Dh (q1-7)

where: Dis the sum of the first symmetric minors of [h]xh

(sum of the diagonal elements).

0 is the sum of the second symmetric minors of [ ]leh

hIs the sum of the h tsymmetric minor of [Qhe][xh].

Then defining the "aeroelastic Index" D by

D = Diq - D2 q2 + ..... h (q1-8)

from equation (II-7)j 0 will equal 0 when q u 0 and Dwill equal I when

q is the dynamic pressure at divergence.

Steady-state divergence of the free system can also be determined

from equation (11-5) by letting g, - s 0. Then

mre 2e - h} o h T31 a 0 (11-9)

where q0 Is the dynamic pressure at divergence. We now note that the

quantity

7 9 thj q ýhe 8ý3

e e

exhibits the same known dependence on q as "D; that Is both functions:

I. Equal I when q = 0.

2. Equal 0 when q a the dynamic pressure at divergence.

3. Are equal to q QXhe when applied to a system containing

only I elastic degree of freedom, I pair of aerodynamic

coordinates.

it is then postulated that

mr 2 w 2 I Uh]ý''
e e

10
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A rigorous proof of equation (1i-1i) was not obtained and Its validity

will be tried by example problems.

The characteristic equation obtained from the determinant of the

matrix coefficients of equation (11-5) is

s2 [4+ As2 +8 - 0 (11-12)

where

2 ~T r~ri 1 ~ TF-f
A ca -' q 0 31 - -' 2 • q Qhemrer

WTe 2 2{ T TT

L4he'qj lh q L3he qt

--rg h0•} [ýhe] + 'r,}O2 [ h]÷t Qh) ý30- • -{oe'ý -ý 31. ,q 0.} r [.0h{O

For a configuration where the slope deflections "sensed" by the

aerodynamic representation are all equal in the first elastic mode,*

then the last term in equation (11-12) for the factor B is zero, since

through normalization can be made equal to For the

configuration considered In Section •V (since only I aerodynamic cell

Is included) this term is zero and probably for a rather large range

of configurations this term has little Importance. Therefore because

this term is of doubtful significance and because Its omission greatly

simplifies the results of'this analysis It will be assumed that

,[-,] {o,,} { } [3lhQ {,} . 0 ,(1-13)

An example of this configuration Is one containing a rigid lifting
surface.

II



Then by substitution of equations (TT-6), (11..I1) and (11-13) Into

equation (11-12), the characteristic equation can be written

s2 L[4 + As2 + B]- 0, (11-14)

where
A-%~2 (I - )÷ ,

2A - r% +%W

*2 2

In equation (11-14) with (I - D) Z 0, a2 will be real and negative

unless A2 - 4B is negative. If A2 - 14B is negative, then two of the

roots a of equation (11-14) will have a positive real part. The

system is therefore on the verge of Instability when

A2. 4.

Then marginal stability is given by

We- (-VMDs(1-5

and since both D and - are always continuous functions of the dynamic

pressure beginning at the origin, the lowest dynamic pressure which will

satisfy equation (11-15) Is given by

Io. , (U z- 16)

Both sides of equation (11-16) are functions of the dynamic pressure.

The dynamic pressure at flutter Is defined as the Intersection of these

2 functions.

The first observation we may make from the results of this analysis

Is that a strong relationship does exist between mode interaction, or

12



flutter resulting from coupling of the first elastic mode and the rigid

body modes, and elastic divergence. This analysis shows that for free

systems which fit the assumptions made, classical "elastic divergence"

will not occur because a flutter Instibility will always exist at a

velocity lower than that corresponding to divergence.

The second observation we may make from equation (11-16) Is that

when D, the "aeroelastic Index", Is negative the frequency ratio is

complex and therefore flutter will not occur. The significance of a

negative D Is that the system Is losing aerodynamic effectiveness (at

a given rigld body mode pitch angle, the aeroelastic deflections of the

structure reduce the total lift force). This observation provides the

following useful qualitative criterla for the susceptibility of a given

configuration to mode Interactions

I. If a system loses aerodynamic effectiveness as velocity is

Increased, then mode interaction will not occur.

2. If a system Increases In aerodynamic effectiveness as velocity

Is Increased, then mode Interaction will probably occuri the

system will be unstable at a velocity less than that predicted

for steady-state divergence. At the velocity of Instability

the ratio of the uncoupled short period mode frequency to the

first elastic mode frequency will be less than I.

COMPARISON WITH KNOWN SOLUTIONS

A number of aircraft were studied on the CEA analog computer In

the course of this project and that reported in reference I. Most

configurations studied exhibited a flutter Instability Involving the

rigid body modes and the first elastic mode, and in all but one of

13



these cases the system tended to diverge at some higher speed. One con-

figuration, (configuration 3 of reference I) a swept wing airplane, lost

aerodynamic effectiveness as velocity Increased* This configuration

showed no tendency to flutter even though the short period mode frequency

virtually coincided with the elastic mode frequency. The one configura-

tion which did not tend to diverge but did exhibit mode Interaction was

one where finite aerodynamic damping will be shown to be a necessary

parameter for flutter to occur and therefore could not be predicted by

this analysis which Ignored all damping terms.

These results in general coincide with the qualitative criteria

drawn from this analysis; however, in most cases the aerodynamic damp-

ing appeared to have a reasonably large effect on the quantitative value

of the flutter speed, precluding accurate prediction by Whis analysis.

Configuration 4 of reference I, the delta winged airplane, showed

very rapid variations In damping at flutter. This phenomenon usually

Indicates that aerodynamic damping terms have little Influence on the

Instability because they do not vary rapidly with speed or AC. location.

The criterion of equation (11-16) was applied to configuration 4 because

damping did not appear to be a controlling parameter In this case. This

criterion was the only one produced In this study which was in a form

applicable to this "plate-like" structure.

DESCRIPTION OF CONFIGURATION 4

The aircraft used in this comparison is Identical to configuration

4 of reference I. The geometry, mass distribution and structural param-

eters are repeated in this report In Figures I through 5. The aero-
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dynamic forces were represented as fol lows:

I. For the purposes of describing aerodynamic forces, the wing

was divided Into three strips shown In Figure 6. The strips

are assumed to be rigid planes whose deflection Is defined by

the plunge deflections at the 1/4 and 3A chord coordinates

shown In Figure 6. The aerodynamic lift and moment on each

strip are rigidly beamed to these same I/4 and 3/4 chord co-

ordinates of the elastic structure.

2. The aerodynamic center of each strip is located on the mean

chord of the strip and aft of the effective leading edge of

the strip a distance xc (c - mean chord length of strip).

x was varied in the study.

3. The aerodynamic lift force on a strip Is given by

Lw~~PV2 S CL(e )

where

c (z, z•) Is the pitching slope of the strip

(positive nose up),

z Is the plunge deflection at the A.C. (positive up),

z and z are the plunge deflections at the 1/4

chord and 3/4 chord points of the elastic structure

(positive up).

Thus

3 - 2x) - zj 2I)- 2

This equation is given Incorrectly In reference I.
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4. The aerodynamic moment about the A.C. Is given by

M - PV S-6~ -(positive nose up).

5. The basic flight condition used in the following numerical

study is described by the parameters:

Velocity = 1655 mph

Altitude - 40,000 feet

Dynamic Pressure - q0  11.9 ib./in.

Lift Curve Slope xC L 5.0 per rad.
a

The dynamic pressure is varied in the numerical study and is

expressed as fraction of the basic value given above (q 0).

NUMERICAL CCMPARIS0N

This configuration was simulated on the CEA passive anaog9 computer

In the project reported in reference I* At that time It was observed to

exhibit the following unusual aeroelastic propertiess

1. Three distinct flutter Instabilities were observed for various

combinations of dynamic pressure and A.C. location. Two of

these Instabilities were Identified as conventional flutter

phenomena involving the coupling of 2 elastic modes. The third

Instability was the result of coupling of elastic modes and

rigid body modes, It Is the latter case which will be consider-

ed In this comparison.

2. The system was observed to have a much smaller stable region

when the system was represented by one elastic mode than when

the higher modes were included In the representation.
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3. The stability of the system was sensitive to small variations

In flexibility.

The application of equation (11-16) to configuration 4 involved

two major stepst

I. The determination of for various A.C. locations and
'e

values of -qoThis calculation was accomplished using
qo

equations (IT-6), (11-4•) and the modal properties of the

system presented In reference I*

2. The calculation of D from equation (IT-8) and the flext-

bT I ty matrix of the system given In reference 1.

The results of these calculations are presented graphically in Figures

7 through 11 for values of x of .25, .30. 3,• .375 and o.40. Also

Included on Figures 7 through 11 are curves of the dirmensionless short

period mode frequency of the rigid system •eand the curve of I -•

when the elasticity of the system is represented by only the generaliz-

ead flexibility of the first elastic mode. The Intersection of the latter

two curves defines the dynamic pressure ratio -9 t' agia sailt

( q0

when the "residual flexibility* of all elastic modes higher than the

first ls Ignoredf The Intersection of the upper curves defines the

stabeluity boundary for the system when almd flexpbrloipty of the system

I ss Ipnclreuded.

The stability boundaries calculated from equation (IT-16) are pre-

sented in Figure 12 along with the corresponding boundary observed In

reference 1.
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Curve A of Figure 12 Is the low frequency stability boundary of

reference I (dynamic pressure ratio (-So) has been substituted for the

equivalent parameter "flexibility factor" of reference I for convenience).

Curve B of Figure 12 it the stability boundary calculated from equation

(n1-16) Including the residual flexibility of all modes of the system.

Curves A and B are In substantial agreement. The discrepancy between

curves A and B can be attributed to any one or all of the following

reasons.

I. The approximations made in this analysis.

2. The omission of all damping terms from this analysis.

3. Experimental error In the determination of system flexibilIty.

DIscrepancies were also observed on the analog computer between

the modal simulation and the "exact" representation. The sta-

blITty boundaries were recorded for the "exact" representation.

Curve C of Figure 12 Is the stability boundary, determined from

equation (11-16), when the flexibility of the system Is represented by

the generalized flexibility of only the first elastic mode. The stable

region above curve B is much larger than that above curve C. This fact

agrees with observations of the analog computer analysis of reference I.

It is not claimed that this comparison proves the validity of

equation (11-16). However It Is known that equation (11-16) is valid

for very simple systems and this comparison does show that It is useful

for qualitative evaluation of a complicated system. The conclusion Is

made that the criteria of equation (11-16) is useful In the prediction

of the susceptibility of a configuration to the "mode interaction"

phenomenon.
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III* ANALYSIS OF AN AIRFRAME CONSISTING OF A SIMPLE
AIRFOIL FLEXIBLY ATTACHED TO A RIGID FUSELAGE

In order to place frequency coalescence methods In proper perspective,

It Is useful to analyze a basic aeroelastic system consisting of a simple

rigid lifting surface flexibly mounted to a rigid fuselage (see Figure 13).

Since we are not concerned here with conventional binary flutter, we shall

assumie that the inertia of the lifting surface Is entirely negligible.

Of course, by Ignoring the Inertia of the lifting surface, we leave out

of account Instabilities which occur because of coupling between the short

period mode and a low frequency elastic mode. This type of Instability

will be discussed In Section IV of the report.

Clearly, If the system possesses Instabilities, they are not of the

type which can be predicted by frequency coalescence methods, since there

Is no finite frequency elastic mode which can coalesce with the short

period mode. We will demonstrate that this system can exhibit three

distinct types of Instability.

The configuration of the system can be specified by four coordinates:

z - vertical deflection of the center of mass, positive up,

o a pitch angle of the fuselage, positive nose up,

za a vertical deflection of the aerodynamic center, positive up,

a0 = pitch angle of the lifting surface, positive nose up.

All coordinates are measured relative to an Inertial reference system.

The equations of motion are

mZ;' . K(za - z - Xea - xae a L

Ild -k(8a e) + xe K(za - Z x xeB- xae Ga)
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0 M - K(za- z - xee- xae x a) + L

0 W X a K(za -z- Xe- xae ea )-k(Oa -) + M

The lift and moment at the aerodynamic center are

L - q S (C L aa - CL L+ CLq

M q S (. Cq _a

! 2

(the geometrical quantities xap xe, Xae are defined In Figure 13).

Introducing matrix notation, these equations may be writtent

- -_ - z -

s2 + Xez I -Xe za

- 0 - - I- - -

2 22222 2 2 2 . 2

10 0 0 0

-qS Cs (-i)

L a v L a L q** a

0 0 0 -C 0
S Ij q 7- a

where w) K W 2 k M r2.

Introduce c as a unit of length, 7 as a unit of time, and PSc as
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a unit of mass. Then the following quantities are non-dimensional:

CL

e c

X- e az L

"ae�c z -q -q

C
GomF L CO 't- Iq

z

c q

2

2a
a c

In terms of these quantities the equations of motion become

"z•e 2 x'ae zz
+- -- -- - -4- - - . . ... ..

S,,2 r2 ÷ s+P 2+ 2 _ 21 . 1 &y 2 _ 2 , 2

" • I _ +p 2~2 ~e e, ~ea -2 "- Q"3'L za z L L ez
2 - 2 2•2 2

SS"z 'Rxae ýz " l eO K"a z2 ICmqS +ae z za a e2 a

(XII-2)

and the characteristic equation is obtained by taking the determinant

of the matrix of coefficients. Laplace's method of expanding a deter-

minant (reference 3) Is convenient and yields the following characteristic

polynomial:

9 2[ 49 +a 3g+ a 2S
2 + a 9 + a.]s o,

where

2
a4 t mq _CLa
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a r(2@ 3*C,. mq\)+p- . 6S C-L L aCL

a a

a2 F 2 r z 2 z2 x2.ae !-La + ("2 L _• 2 2 CL tm+L Em
aa q a q

a 2  ~2lu 2  L L ) ~a q -% . UL

Before deriving any conclusions concerning the stability of the

system, It Is useful to introduce a fictitious frequency, wo0  which

would be the undamped short period frequency if the airframe were rigid.

S.V2) Xa (111-3)
%" ~m r2

The usefulness of this parameter depends upon the fact that given %, the

velocity V Is determined and vice versa, and upon the fact that stabil-

Ity criteria are more conveniently expressed In terms of frequency ratios

than in terms of velocity. The non-dimensional frequency corresponding

to W is simply

[ c L

10 W o _ ,

In the characteristic equation replace 7L by

CL %-- 7 ~a ac

and divide the equation by pFu1al4. In this way we obtain

"3 A 2  + A 1  01 a (h
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SC

c "a

A " l° z ( a2 a. _ _2 (z1L-6)

(Re .Fa +a C

3 c La L! ac0

W2 w2 2 2 R2+r2)Cm (w 2 r 
2 C

A2o.z+ w .,+w %2 e~o +% Po=

xa c a o ac a

L2 \ \2(2 CL Cf
Ii-) .'2 2

I ac7 oac L L

A 2 WZ (w +c ?2 2C(19
Obviously, the characteristic polynomial has a pair of zero roots.

These roots merely express the fact that all altitudes and all directions

of flight are equivalent. There are several Interesting special cases.

A. Suppose the torsional stiffness Is Inflnite (@ " o).

In this case the characteristic polynomial Is

93 + b2 32+ b 1 9+ bo -0, (III-IO)

where

2 -2 Cm

2 c(70) 00c

b2.r- - o L•(ZI-Il)

a

b% 2 6 (U2 + r=2 _ Rac ._5 (z+z-C2)
r2 0L L~

a acC C

_ac •,2 2 Cm\

c -2 (w z + ?2 2 (111-13)0 C-)e O

bac a
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For a given airframe, it is convenient to take the frequency ratio

0
0 as a measure of velocity. Since wz is known and is Independent of

(0

velocity, 2 Is proportional to velocity V. The value of V at which

the airframe Is neutrally stable is of particular Interest, and can be

determined as follows. Suppose the airframe Is neutrally stable, then

there Is at least one root of the form - la where V Is real. It

follows Immediately from the characteristic polynomial that if w 0:
-2=b
w2 b1

I2)bo

2

or

bIb 2 - bo.

This condition determines the value of at neutral stabilitys
zW

CM

2 C I + - 2 mq

2 r2 Cmq + xa L

+ I -+ .

Xac ac La

In many cases, especially in cases where the surface Is mounted

well aft of the center of mass of the airframe, the effects of CL and

C (pitch damping coefficients) will be negligible compared to the
mq C L CM

effects of CL. In such a case we can Ignore the ratios -S
LCL L

a a

and an especially simple expression for the frequency ratio (at
0

neutral stability) Is obtained:
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2 2

0 OW + xac

This criterion can be given a simple physical characterization. Imagine

the aerodynamic center to be rigidly constrained, the airframe being

otherwise free of forces and constraints, then the natural frequency

of the system is

.* w% r 2  , ,a, (z11-16)

Therefore, when the short period frequency wo (computed as though

the airframe were rigid) equals the frequency w*a neutral stability

occurs. The frequency of the neutrally stable oscillations of the air-

frame Is simply 4 02° the short period frequency computed by

assuming the airframe to be rigid. Although the presence of pitch damp-

Ing due to CL and Cm will modify these conclusions slightly, the basic

mechanism of the instability for practical cases is revealed by (111-15)

and (111-16).

Notice that the frequency ratio at neutral stability can be express-

ed in terms of four dimensionless parameterst

r
2

x
ac

Cm•2.
0 CL

a

CL
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C
m

ac a
2

and If damping terms are small, only a single parameter is Involved, =-
Xac

0. Infinite plunge stiffness (&z =oo).

The characteristic polynomial is again of third orders

c 33 + c 2 + 2 •+c +co - 0, (111-17)

where

1(.2.. CL C (1-8c 3 (R ae2 _ ReC ;

= •ac L L

a ac a

We2 \% + 2 1.2 CL•

o , / q0 qL

Suppose +- l, a real. Then
- c (i+ c w 0 O,

- C2  5 + CO %c O.

Obviously1 ?• , 0 implies co 0,O and this Is not possible unless eoo = 0.

This last condition implies that the surface is connected to the airframe

by means of a torsional spring of zero stiffness or else the velocity is

Infinite. If •0 then
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C2  c 3
co €I

and we get for --
W
0

CmC
- C Lq Cm

2 2+-2C / Cm ae xaeC= CqW e 2 x R 0 -- + -r2 L q La

'W ac X L CLq Cm
ac aa c ac j +3

a c CCL C L
a a

(111-22)

Now 3Z aIs negative if the airframe has a positive static margin. There-

fore if the elastic axis Is aft of the aerodynamic center, - -Le i
Xac

positive, and Instability Is certainly possible. It appears that the

existence of an instability Is closely connected with the divergence

properties of the lifting surface. Thus, If - Vae Is positive, the

surface Is capable of divergence when the fuselage of the airframe Is

restrained. The Instability predicted by (111-22) Is as close as the

free system can come to divergence. The Instability is not ordinary

divergence since the frequency of the Instability Is greater than zero.

It Is not generally possible to Ignore the pitch damping terms C Lq

Cniq in equation (111-22). since the character of the Instability can be

drastically modified by these terms. in fact, there Is one Interesting

case where the pitch damping terms can produce instability at a very

low airspeed. Suppose we positirnn the aerodynamic center with respect

to the elastic axis in such a way that

C C
- q m q

x a a L + Z 0 (111-23)
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We can then position the lifting surface with respect to the center of

gravity of the airframe so that
CL Cm

,2 2 c ac -4 s L o (111-24)

a a

Then It is obvious from the expressions given for the coefficients of

the characteristic polynomial that

- -2ý CmF 0 _L . 0. (e
+) ae+U) e521+ 2P P(111-25)

ac a ac a

and therefore the system can be neutrally stable for all values of (e)

(e.g. the system Is neutrally stable at every airspeed from 0 to Oo).

Notice that CLq Is crucial to this phenomenon. If CLq a 0 it is not

possible to satisfy either of equations (111-23) or (111-24). it would,

of course, be rare to encounter an airframe which satisfied the conditions

of equations (111-23), (111-24) exactly. However the example does show

that the effects of pitch damping can be very Important. Note also that

structural damping (dashpot In parallel with the torsional spring of

Figure 13) would tend to eliminate this Instability at low airspeeds.

The frequency of the instability Is apparent from equation (111-25)-

In the general case, where both co and w. are finlte, the substitu-

tion i - iE Into the characteristic equation (111-4) yields

- A3 F3 + A 1 9 0

A4 W - A2UP+ Ao 0

where the A's are given by equations (111-5), (111-6), (III-7), (111-8),

(111-9). If 0 1 0, these two equations can be combined into
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A4 ( - A2  + + A 0. 2.

Happily, If this equation Is rearrangeds it becomes linear In (•o *
and we find

F"C+La Cm
2 7 22 ac2'3c ;L* CL•- 2 m SF2 L-

r2 + (Az 3f.2 ga L m

+ ÷ +P 2 2 m a L - a (11-26)

C 2 L 2  +cr2 L aa acV+ CL

oe

r2

ac
C1~~ a) L ~ a a(1-6

A
The frequency of oscillation Is obtained from G? ~

W3

+ C1q

ac ac

(a) 2 CL1a) (W) L

Thefreueny ati ~0 (e ae

The requncy atio at neutral stability is determined by the
00

following set of seven non-dimensional parameters:

r2

x2
ac

ae
xac
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CL

ac LI mq

aC a

Cm

L
a

z

X2 2e
2

x
ac

Our conclusions regarding airframes which consist of a single light

lifting surface elastically mounted to a rigid fuselage may be summarized

as follows&

A. The system may b#o dynamically unstable even though It Is

statically stable.

B. The velocity at which the airframe becomes neutrally stable

Ile
can be determined from the frequency ratio , which can

70

be expressed In terms of the seven non-dimensional parameters

Cm

listed above. The parameter % CL q is usually quite small

a

and is less Important than the other parameters.

C. If the torsional stiffness between the lifting surface and the

fuselage is infinite, an instability will occur when the short

period frequency wo equals the frequency W *. The latter fre-

quency is simply the natural frequency of the fuselage on the

L.2



plunge stiffness when the displacement of the lifting surface

at the aerodynamic center Is restrained. This simple criterion

is strictly correct only if the effects of aerodynamic pitch

damping are Ignoredi however, the criterion is not sensitive

to pitch damping for practical airframes.

0. If the plunge stiffness between the lifting surface and the

fuselage Is infinite, either of two types of Instability may

occur. If the aerodynamic center Is forward of the elastic

axis (x ae< 0), an Instability occurs which is connected with

the possibility of lifting surface divergence, In addition,

by careful positioning of the elastic axis with respect to the

aerodynamic center and the center of gravity, It is possible

to obtain an airframe which Is neutrally stable at all air-

speeds. This type of Instability can only be produced If CL
q

is different from zero.

E. None of the above Instabilities can be predicted on the basis

of frequency coalescence methods. We can describe the insta-

bilitles as being due to aerodynamic coupling between zero

frequency modes (rigid motions) and infinite-frequency modes,

since the structure tn vacuo possesses only these types of

modes.

F. The conclusions of this section should apply to airframes with

a simple, light, lifting surface and a fairly rigid fuselage.

A more realistic type of airframe is analyzed In Section IV.
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IV. ANALYSIS OF AN AIRFRAME HAVING TWO RIGID

BODY MODES AND ONE ELASTIC MODE

The configuration shown in Figure 14 is In some ways more general

than the configuration analyzed In Section III and is also a configura-

tion which frequently occurs in practice. A detailed analysis should

therefore be useful. It Is convenient to give the equations of motion

in modal form. There are two rigid body modes and one elastic mode.

If the rigid mode shapes are properly normalized, the equations of

motion of such a system can always be written in the form

mz -fp(x, yOdS

S- fxp(x, y)dS (OV-I)

me(4 + W2 e 2 .)- (x, y)p(x, y)dS

where

m - the total mass uf the system

I - the total pitching Inertia about the center of mass

me a the generalized mass of the elastic mode

p(x, y) - net vertical pressure on the element of area

dS at the point (x, y)

O(x, y) = mode shape of the elastic mode

If 0,- 0 then the two normal coordinates z and 0 have a simple geomet-

rical significance, z being the vertical displacement of the center of

mass and 0 the pitch angle of the fuselage. The geometrical significance

of g depends upon the way in which the mode shape k(x, y) Is normalized.

We shall assume that a single rigid lifting surface is mounted at some

point on the fuselage as shown in Figure 14. Then~the vertical displace-

ment of any point of the surface is

z + xG + 4(x, y)0
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and the slope of the lifting surface is

a 4

obtained by taking the partial derivative of the vertical deflection

with respect to x. Since the surface is assumed to be rigid. r. must

be a constant over the surface. If we normalize the elastic mode shape
a(D

by setting 7 - I, then g has a simple geometrical significance, When

e - 0, 4 is simply the pitch angle of the lifting surface* It follows

from - I that O(x, y) - x + constant. It Is convenient to express

this constant in terms of the position of the node line of the elastic

mode. When z - 0, e - 0, the vertical deflection of the node line Is,

by definition, zero. Therefore C(x, y) - x - x no over the lifting sur-

face and the vertical deflection of any point on the lifting surface Is

z + xe + (x- xnA-

while the slope of the Ilfting surface is 0 +

The total lift, L, and the moment about the aerodynamic center of

the lifting surface, M, can be expressed In terms of p(x, y):

L - Jp(x, y)dS

M - (x - xec)p(x, y)dS - /xp(x, y)dS - Xac Lacc

It follows that the equations of motion can be written

19 a M + x ac L (xv-2)

m 0(ý + ae2 g) P 11 + xan L

where xan Xac - XnJ , The lift and moment on the lifting surface can

be expressed in terms of the vertical displacement of the aerodynamic

center, the pitch angle of the surface, and the derivatives of these
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quantlitlest

L =qS C 6 L a + C a

Cm 2 a 
(Vv-3)

q

where

Z z + B+÷ ( - )i- z+- xa e+x a

ea-ae+

q I PV2

In matrix forw, the equations of motion are

- c4 ( - -c-

- LV.'•] CL°'"x 8 cCL" Cq)• L jV" anCL o"CL " -

0 Is 2a (V
- --J. +cc I

0( tm 2 + w 2~
ec e--xLC

L - C Cm V I XLcCL kL)L xanCL XcCLq mqj*e

a qa a q)s

aS L a V cL-(xcCL XaCCLC+ C) acL(x

XanCL V Ian L,(a'cL C nqiL 1 an L an L -x anL q2mq)V

Introduce c as a unit of length, • as a unit of tite, and PSc as a

unit of mass, Also, introduce the radii of gyration

r2 . I/m

re2 . me/m
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Then the following are convenient non-din'ensional quantities:

"T -r/c W - c,/v I =-m/Psc

%/ U cW A' Z C /2M
re r eA e L a

% -x •c X -z/c CLq -C Lq/2f

Xan =Xan/c Cm q cm /2

The equations of motion can now be written

" •acCLU" IxanC-L xanl c•L = "anL ÷C"q) I xa~c=(xaen2CLxa "-cL q+V a anCL+

- anL~ a L.-kanc L axanLq+fl~ J'Ca{ q) r
22 2

(Iv-5)

The characteristic equation Is obtained from the determinant of the

matrix of coefficients In (IV-5):

S2 (94 + A 3- 3 +A 23 2 +A IF+ AO)O (i0 v-6)

•A WO2 [p2+ Z 2 " e2 CL• + C r nR 2 - + m
51 c +1 ;a + -( n- -Ran q

3 2
A2--aO Ii + +ir2 R a +F 

2 X--+• •

I r e3ac x ac L L Fa a n CLe /

2A o L4 + 2. C L q + c OLq)?(e)
I c ac c 'c

A 4 ( a+ % 2 C a c C LC(L / \ % /

0 10 (,
Sac L a



where wo and are defined as In Section III of this report:

- ~ ' ~ CL Xac

In order to determine the velocity at which the airframe becomes

neutrally stable, substitute i IM in the characteristic equation,

then if M jW 08

- Aa +2, AI -0

14- AM2+A - 0

or

(r) - A2 ) + Ao 0 (IV-7)

This equation Is linear in (WO)2 if we divide through by (if)2 .

w Is given, then can be determined from the ratio " * Furthermore,
10

since

O PCL NXac CLa

is a linear function of V for a given airframes it follows that the

velocity at neutral stability can be determined from (IV-7). Note that

the frequency wo does not represent the short period frequency of the

airframe except in the trivial case where the airframe Is rigid. o

is simply a convenient way of specifying the velocity V. From (IV-7)

we get a

"oS2 a2"- a (1V-8)
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where

2L C

c ac L x L
a a C ac a L

\+( +2  m CL)2 (m"2/3an Ran I I

\Xa/XcaLc aca)
"..% La a. ea R. a

( Iv-9)

b + \ 2 Xan 2 + [ 2 + n0+ (v-1)
e/ ac 7 87 O ~ " U

c2 m? Iv-i1)

Equations (rV-8), (IV-9), (IV-10), and (IV-II) were used to construct

the stability boundaries presented in the Appendix. The frequency of the

A
neutrally stable oscillation Is obtained from 5 - A

_ 2 3 CL CmXan an I I

2 C2 1 ac 2
acacL a x aC (v-12)

F~ e 2 2 ICL C

S-ac L --- Lac a ac a

Six parameters suffice to determine the frequency ratios . and
0

* They are

CRan

Rac

p2 R
e
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p2

ac

CL
I CL

ac La

12 Cm Cm

o - Z3ac La a

where m is the mass parameter, i, a m/PSc. These parteters are the same

as appeared in connection with the simple airframe discussed In Section

III of the report, except that the parameter --j replaces the frequency
re

eeratio parameter 14Z , and the node line position ,nR replaces the elastic

axis position 3e -

In the limiting case, where the generalized mass of the elastic mode

Is allowed to approach zero (P. -2 0), equation (IV-6) becomes Identical

with equation (111-17) of Section 111, provided we identify the node line

position -n, with the elastic axis position Xe

As was found previously, the presence of aerodynamic damping can

have a profound influence on the stability of the airframe. Consider,

for example, the case where

- - C Lq C, 0 (IV-i3)
nL La

then 2

5 ,



which shows that the airframe Is neutrally stable at zero airspeed. This

instability is caused by the loss of aerodynamic damping on the elastic

mode due to the destabilizing effect of CLq. Thus, since structural damp-
q

In g Is Ignored, the structural mode Is neutrally stable In the absence of

aerodynamic damping. Now the aerodynamic damping can be positive or nega-

tive In general, and the condition (IV-13) Is Just the condition that the

aerodynamic damping be zero. If CL 0, the instability cannot occur

since equation (IV-13) cannot be satisfied. This type of Instability

Is entirely similar to one of the instabilities discussed in Section III

and accounts for a prominent feature of the stability boundaries present-

%*
ed In the Appendix. The curves of - given In the Appendix for the

"of c
case of subsonic aerodynamics display a sharp dip. The value of Rn at

which the dip occurs is correctly predicted by equation (Iv-13). The

curves drawn for supersonic aerodynamics do not exhibit this feature,

since C L 0 for these curves. Instability due to loss of aerodynamic

damping is very sensitive to the presence of structural damping and may

be masked at low airspeeds by the structural damping.

A much more violent Instability will be exhibited by the airframe

of Figure 14 If the aerodynamic center Is forward of the node line. In

this case the short period frequency and the elastic mode frequency will

come close together at a sufficiently large airspeed. At higher air-

speeds, one of these two roots will become quite unstable. It Is useful

to examine this type of Instability by the frequency coalescence technique.

Wofc is defined In equation (IV-19).
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Ignore all damping terms In the equations of motion (WV-14 ). Then the

characteristic equation can be obtained from (IV-6) by setting CL - Cmq

-0 and dropping the terms of odd order In 3. In this way we obtain the

following characteristic equations
U + A! 2 + BO 0(Iv-lh)

2(w4 an I+B (xv-14)

p2
0 a

where R - = 0

32 will be real and negative unless A2 _ ýB Is negative. If A2 - 4B

is negative then two of the roots of equation (IV-I4) will have a positive

real part. The airframe Is therefore on the verge of Instability when

A2 - 4 - 0 (Iv-T7)

or, according to equations (IV-15) and (Iv-16), when

(2 2

a * acI L/(-8

To distinguish the value of to determined by equation (IV-8) from

the value given by equation (IV-18), denote the solution of (IV-l8) by

%ofc * Then

I + X--Ran (IV-19)

ofc Xac

Thus, according to the frequency coalescence criterion, there are only

two parameters involved In the stability problem,
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R .- 7- (generalized mass ratio)
re

xan . ac -xNS
sc xac

The parameter .- Is negaitive If the aerodynamic center is forward of
ac

the node line. According to frequency coalescence, Instability can occur

only if the aerodynamic center Is forward of the node line of the elastic

mode. - Is plotted versus - In Figure 15 for several values of

R. The frequency coalescence solution of the stability problemf Is re-

markably simple, however It can be highly unconservative due to the fact

that the effects of aerodynamic damping are entirely Ignored. Also, only

one of the two essentially distinct instability mechanisms Is explained

by the frequency coalescence approach.

The discrepancies between the predictions of the frequency coales-

cence method and predictions of the more exact theory are clearly exhibit-

ed In the stability boundaries of the Appendix. On the graphs presented

In the Appendix the frequency coalescence solution Is simply the straight

4)
line ..2. I.

%fc
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V. CLASSIFICATION OF AEROELASTIC STABILITY PROBLEMS

The study and analysis of the stability of airborne vehicles was

historically divided into three fields of Interestt

I. Stability and control.

2. Flutter.

3. Steady state aeroelastlcity (divergence).

A definition of scopes of these fields has never been established; how-

ever, in their origin these areas of technology were directed at specific

phenomena.

I. The analytical effort, most commonly called the study of

*stability and control", was concentrated on aircraft

stability problems which exist when the aircraft Is a rigid

body. The effects of elasticity have been Incorporated into

these analyses but often In such a manner as to exclude the

dynamic response of the system in any of Its finite frequency

normal modes.

2. The field of Flutter analysis has been limited to the study of

aeroelastic Instabilities which arise from the "coupling" of

two or more finite frequency elastic modes of the aircraft.

In many, and possibly most, flutter analyses of aircraft, the

vehicle has been represented by a relatively small number of

(10 or less) finite frequency elastic modes of the free system.

Zero frequency modes have commonly been omitted from flutter

analyses along with consideration of the generalized flexibility

of modes higher than those specifically included In the analyses.

3. Steady state aeroelastic instability, commonly called divergence,
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has been a recognized problem since the very early days of

aircraft design. The analyses of steady state aeroelastIc

phenomena In essence ignore the Inertia of the vehicle except

for the consideration of "inertia relief" In free systems.

Recent years have brought about some changes In the analytical fields

discussed above which tend to merge their technologies. The results of

this study indicate that a unification of these analytical fields Is

desirable and necessary to produce a reliable aeroelastic stability

analysis of a modern airborne system.

CLASSIFICATION OF AEROELASTIC PHENOENA

Collar presented a classification of aeroelastic problems in the

well known "Collar's triangle of forces" by which aeroelastic phenomena

are described as being the result of various combinations of aerodynamic,

elastic and Inertia forces. We propose another aeroelastic triangle

(Figure 16) for free systems as a supplement to Collarts triangle.

A classification of aeroelastlc phenomena Is made In the triangle

of Figure 16 by the normal modes of the system which are required In a

representation of the system to produce the phenomenon. The apexes of

the triangle of Figure 16 are:

O - zero frequency or rigid body modes

F - finite frequency modes

00o Infinite frequency modes or residual flexibility

Since Figure 16 applies to aeroelastic problems, aerodynamic forces are

involved In all phenomena described.

The problems Included in the numbered boxes ares
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I. Classical stability and control problems Involving a rigid

vehicle and aerodynamic forces.

2. Classical flutter problems involving 2 or more finite frequency

modes and aerodynamic forces.

3. Classical steady state aeroelastic problems Involving only

elasticity and aerodynamic forces.

4. "Mode Interaction." To a stability and control analyst this

problem Is described as one where elastic modes have a pro-

nounced effect on the low frequency response of the system.

To a flutter analyst this Is a problem Involving coupling of

the rigid body modes with the elastic modes. This phenomenon

Is shown to be a stability problem In the analysis of Section

TV of this report and is undoubtedly a problem In the predic-

tion of the dynamic behavior of a system at a velocity below

the flutter speed.

The analysis of Section IV shows that this stability

problem can be predicted, for many systems, by "frequency

coalescence" methods (omitting damping terms) but for certain

systems the damping terms can have a dominating effect on the

solution.

"5. "Elastic Interaction." This problem area will include the

modification of "rigid body" dynamic response by the elasticity

of the system and the stability problem shown by the analysis

of Section III of this report where a free system can be un-

stable by virtue of only plunge or pitch flexibility of its

aerodynamic surface.
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This stability problem Involving plunge flexibility is

quite interesting becauses

a. It is a flutter problem which can exist for an

Idealized system which has no finite frequency

normal modes.

b. It is a flutter problem for which the "mechanism"

of Instability can be easily understood.

Most flutter phenomena are the result of complicated, relative

phasing between structural motions which cause aerodynamic

forces to either add or subtract energy from the system. For

this case of "elastic Interaction" the structural deflections

have no relative phase angle and the phenomenon can be easily

explained as follows.

Consider the airframe of Figure 13 with a rigid pitch

spring (K e) and a flexible plunge spring (Kh). Figure 17

shows the airframe at the instant of maximum deflection (of

unit pitch angle) In Its short period mode for various values

of velocity.

Figure 17a corresponds to a low value of velocity. The

short period mode frequency is low as well as the lift force

L. The short period mode Is well damped by virtue of the

lift due to the plunge velocity h.

Figure 17b corresponds to a higher value of velocity.

The lift force has increased from that of Figure 17aj and,

therefore, the short period mode frequency and the deflection

of the spring Kh have Increased. Since h Is smaller, the

damping of the short period mode has decreased.
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Figure 17c corresponds to a higher velocity than Figure

17b. At this speed the lift force on the aerodynamic surface

is sufficient to deflect the plunge spring (Kh) the distance

y and therefore reduce the plunge of the surface to zero.

Since the plunge of the surface Is zero, the damping due to

plunge Is also zero. If this system Is subjected to a still

higher velocity the aerodynamic surface will plunge In a

direction opposite from its attachment point. Since the

plunge velocity h of Figure 17 contributed positive damping

to the system, It is only reasonable that when the algebraic

sign of h is changed the damping will be negative. Since the

damping In the short period mode is attributable primarily to

the plunge velocity, the system will be unstable at a dynamic

pressure slightly higher than that depicted In Figure 17c.

6. "General Aeroelastic Problem." Section 11 of this report

presented an analysis and comparison of the solution of con-

figuration 4 of reference I. It has been demonstrated that

a reliable prediction of the dynamic response of this con-

figuration can be attained only through the Inclusion of zero

frequency modes, finite frequency modes, and the residual

flexibility of all higher modes of the system In the modal

representation.

The analysis of Section 11 omitted the aerodynamic damp-

Ing terms for simplicity. This assumption was apparently

reasonable for the solution of configuration 4 because of the

relatively high altitude considered. The analysis of Section

III shows that this assumption cannot be used In the general

61



case and for many configurations can lead to an extremely

unconservatlve prediction of the flutter speed.

7e The problem area described by area 7 of Figure 16 can be

described as an aeroelastic Instability which can be repre-

sented analytically when only an elastic mode and the residual

flexibility of the system are included. Such a phenomenon is

not known to exist but It Is postulated that the problem area

will be discovered In the future.
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2

Figure 16. Diagram of Aeroelastlc Phenomenon
of Free Systems
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A, C.

(a)

(b)

(c)

Figure 17. M1sslle With Elastically Attached Massless
LIfting Surface
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VI. COMPUTER STUDIES OF MISSILE CONFIGURATION
AND COYMPARISON WITH THEORY

Studies were made on the Computer Engineering Associates, passive

analog computer of a number of "airborne missile" configurations. The

purpose in making these computer studies was to provide a check or

Independent verification of the analyses of this report and to study

the effects of parameters not Included In these analyses.

The basic missile configuration considered In all computer studies

was configuration 2 of reference I. The geometry, mass and stiffness

data for this basic configuration are repeated in Figures 18, 19, 20

and Table I. During the conduct of this study numerous variations were

made In this configuration. In most computer analyses the forward aero-

dynamic surface was omitted. All variations to the configuration are

summarized in Table 2. In all cases the aerodynamic surfaces were

considered to be rigid and elastically restrained by a "pitch" and

"plunge" spring at the missile station listed In Table 2 as "e.a.

Station".

The aerodynamic forces were represented as folIowss

I. The forces on the body of the missile were assumed to

be zero.

2. The lift forces on the surfaces, normal to the surfaces

and positive upward are given by

L S ( sZ +

where Z is the normal deflection (positive up) and e Is
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the pitching slope (positive nose up) of the surface at

the aerodynamic center of the surface.

3. The moments about the centers of pressure of the surface

are given by:

M I I 2Mu- -PV2 S• -Ts e

4. The effects of downwash were neglected.

The "basic" flight condition is defined by the following aerodynamic

constants:

Velocity - 2250 mph

Altitude = sea level

Dynamic Pressure - qo 90 Ib./In. 2

Lift Curve Slope a C = 1.5 per rad,

The flutter speeds measured In the studies were tabulated as a fraction

of the basic velocity (V0), thus flutter speed Is listed as the ratio

V/Vo0°

The computer studies of the configurations listed In Table 2 deter-

mined the dynamic pressure corresponding to flutter. In all cases the

flutter encountered was of the general type discussed In this report;

that Is, it involved the rigid body modes of the system as indicated by

a flutter frequency below the lowest natural frequency of structure In

a vacuum°

RIGID FUSELAGE - CASES I THROUGH 9

Cases I through 9 considered a rigid fuselage with a single aero-

dynamic surface elastically attached near the aft end of the missile.
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Listed at the right side of Table 2 are the values of flutter speed

measured on the analog computer, calculated from the criteria of Section

III and from the criteria of Section IV.

Cases I through 5 considered an aerodynamic center which coincided

with the elastic axis of the lifting surface.

Cases I, 2 and 5 are Identical except for the pitch Inertia of the

elastically supported aft surface. The correlation between theory and

measurement was fair for cases I and 5 where the Inertia was quite small

(zero In case 5) but much poorer in case 2 where the Inertia was I1

times larger. The flutter speed calculated from the criteria of Section

III Is Identical for cases I, 2 and 5 because the mass of the surface

is completely Ignored In the analysis of Section III# The discrepancy

between the theory of Section III and measurement In case 2 Is easily

explained by omission of the mass from the Section III criteria but

the discrepancy between the measurement and the criteria of Section IV

cannot be explained.

Cases 3 and 14 are Identical except that the mass of the lifting

surface, elastically mounted by a plunge spring, vwrs omitted in case 14.

The Identical flutter speed was measured on the computer for these 2

cases as also was, of course, predicted by the theory of Section III

which Ignored the mass completely. The criteria of Section IV could

not be applied to cases 14 and 5 due to the absence of a finite frequency

elastic mode. The correlation between theory and measurement Is con-

sidered reasonably good for these cases. The discrepancies can be

ascribed to the equivalent structural damping Inherently present in
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the passive analog computer.

Cases 4 and 5 are interesting specimens of flutter because In a

vacuum the structures In both cases have no finite frequency modes.

When described by their normal coordinates these configurations possess

two zero frequency degrees of freedom and one Infinite frequency degree

of freedom. Nevertheless these configurations exhibit a flutter in-

stability at a finite frequency.

Cases 6 and 7 are similar to cases I and 3, respectively, except

that the aft aerodynamic surface was shifted forward 10% of its chord

in cases 6 and 7 while retaining the attachment point of the surface

to the fuselage at the same point on the fuselage. The effective

elastic axis of the aerodynamic surface was, therefore, at the 60%

chord, 10% of the chord aft of the aerodynamic center. The configura-

tions of case 6, where the pitch restraint between the fuselage and the

aerodynamic surface is flexible, tends toward steady state elastic

divergence. Divergence would be encountered at a dynamic pressure

corresponding to V/Vo of 1.39. Table 2 shows that a dynamic Instability

Is encountered at a somewhat lower speed than the divergence speed.

The comparison of cases 6 and 7 to cases I and 3 demonstrate the

sensitivity of the flutter phenomenon to the relative locations of the

aerodynamic center and the elastic axis of the lifting surface. This

extreme sensitivity may be considered as an explanation for some of the

discrepancies in theoretical predictions and computer measurements shown

In Table 2. The precise location of the aerodynamic center Is difficult

to control In the experimental procedure followed on the analog computer.



It seems also worthwhile to point out that the precise location of the

aerodynamic center is generally not known for a physical system and, in

fact, cannot be defined as physical point except for idealized systems.

Cases 8 and 9 are similar to cases 7 and 6, respectively, except

that the lifting surface was moved aft 300 Inches In cases 8 and 9.

This variation affected the flutter speed very little In the computer

measurements and had a somewhat larger effect on the theoretical pre-

dictions.

FUSELAGE WITH SINGLE BENDING DEGREE OF FREEDOM - CASE 10

Case 10 considered a configuration where the entire system was

rigid except for a single flexibly restrained "hinge* at fuselage sta-

tion 700. The purpose of studying this design was to experimentally

evaluate the phenomenon shown on the charts of Section IV where the

flutter speed Is zero for specific parameter combinations. The flex-i-

bility of the system was reduced to the single flexibly restrained

"hinge" In the fuselage to preclude considerations of "residual flexi-

bility". The location of the lifting surface was varied in this case

to provide a variation In the dimensionless parameter Xnj "xac
ac

Figure 21 shows a comparison between the flutter speeds predicted

by the theory of Section IV, frequency coalescence, and analog computer

measurements. The radical difference between theoretical prediction by

Section IV and computer measurements Is easily explained by the presence

of a small amount of equivalent structural damping in the computer

solution.
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Figure 22 shows some typical V-g diagrams for the configuration of

case 10. The curve labeled "structural damping" shows the equivalent

structural damping level which existed In the analog computer at the

values of dimensionless velocity V/Vo. For the curve corresponding to

Xn -x ac of 3.84 the Intersection with the structural damping curve

'ac

is at a value of V/V° virtually identical to that at Its intersection

with the 0 damping axis which Is considered to be the flutter speed.
At this value of XnJ "xae

theory and computer measurement are InX nJ

reasonable agreement as shown In Figure 21.

xM - xa
The curve on Figure 22, corresponding to m- c of .264 never

Xac

Intersects with the "structural damping" curve; and If the structural

damping curve were subtracted out of the solutions, this configuration

would apparently be unstable at all finite velocities as shown In

Figure 21.

This single example cannot be considered to prove that the low

speed instability problem shown In Section IV can be completely Ignored

in the presence of a small amount of structural damping. This example

does show that this problem may not be as serious as might be concluded

from a consideration of only the results of Section IV.

EFFECT OF ALTITUDE - CASES II AND 12

Cases II and 12 may be compared with cases I and 3, respectively,

to show the effect of an Increase In altitude. Cases I and 12 correspond

to an air density 1/10 of the air density considered In cases I and 3.
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The change in the flutter speed is shown to be an Increase of 12% to

16%e It may be concluded that the "mode interaction" phenomenon Is

not sensitive to air density or altitude parameters.

FLEXIBLE FUSELAGE - CASES 13 THROUGH 25

The comparison between theory and computer measurements for cases

Involving a flexible fuselage, in all cases, showed rather poor cor-

relation. This lack of correlation Is probably due tot

a. The presence of higher elastic modes In the computer repre-

sentation which were ignored In the theoretical analyses.

b. Equivalent structural damping In the computer measurements

which was ignored In the theoretical analyses.

The analyses of Sections 11 and III were not applied to these con-

figurations because they were known to include assumptions which pre-

cluded their applicability. The analysis of Section II cannot be con-

sidered applicable to any cases of this configuration because It Ignores

aerodynamic damping. The results of cases I through 9 and the analysis

of Section III identify the mode Interaction phenomenon of this "missile

configuration" to be Intimately related to the aerodynamic damping. How-

ever the flutter phenomenon observed In some cases of this configuration

were undoubtedly related to the Instability studied in Section II.

EFFECT OF FLEXIBLY MOUNTED LIFTING SURFACE - CASES 13 THROUGH 16

Cases 13 and 14 consider configurations that are Identical except

for the flexibility of the attachment of the lifting surface to the

fuselage. Case 13 considered the attachment to be rigid and case I4 con-

sidered the attachment in pitch and plunge to be of "basic" flexibility.
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The flutter speeds measured for these cases were virtually Identical,

but the system damping at speeds less than the flutter speed were quite

different. Figures 23 and 24 show the V-g diagrams for these cases In-

cluding the "short period mode" and the lowest "elastic mode of the

system". In case 13, where the aerodynamic surface was rigidly connect-

ed to the fuselage, the short period mode remained well damped throughout

the speed range up to the vicintly of the flutter speed where Its damping

Increased. In case 14, where the lifting surface was elastically connect-

ed to the fuselage, the damping in the short period mode became progres-

sively smaller as velocity increased until It became unstable at the

flutter speed.

The simplified analyses of this study are not capable of either

predicting or providing an explanation for this difference between cases

13 and 14. The results of this study are capable, however, of defining

the minimum complexity of an analysis which would be applicable to these

cases as an analysis which includes consideration of

a. Two rigid body modes.

b. One elastic mode.

c. The residual flextbility of the higher modes of the system.

d. Aerodynamic damping terms.

e. Prediction of system damping at speeds less than the flutter

speed.

Such an analysis of a specific configuration is not considered overly

complex for practical solution, but the complexity does appear too great

for the type of generally applicable solutions sought In this study.

It should be noted that the Intention of the analyses of this study
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was to predict the susceptibility of a configuration to "mode inter-

action" and that the difficulties experienced in predicting precise

flutter speeds or the response of the system at subcritical speeds

does not Impair the fulfillment of this intention.

A comparison of cases 15 and 16 show that when the rigidly mounted

surface Is moved aft of the node line of the first elastic mode, the

instabillty disappears; but that when the flexible mounting of the lift-

Ing surface Is Introduced the system is again unstable at virtually the

same speed as In cases 13 and 14 where the surface Is forward of the

node line.

EFFECTS OF CANARD SURFACE - CASES 18 AND 19

The configurations studied In cases 18 and 19 are identical to

those considered In cases 14 and 13, respectively, except that the

canard surface of the "basic" configuration is added in cases 18 and

19. The effects of the canard surface are simply to increase the

flutter speed about 7%. The V-g curves of cases 1 and 19 are similar

in character to those of cases 14 and 13, respectively, shown in Figures

23 and 24.

EFFECTS OF THE POSITION OF THE SINGLE LIFTING SURFACE - CASES 22 THROUGH 25

Cases 13 through 16 and cases 22 through 25 show the effect of posi-

tioning the lifting surface at four locations along the fuselage from

station 800 to station 1000. At each location the effect of flexibility

of the lifting surface attachment was Investigated. As shown in Table

2, the flutter speed was affected very little by the variations In position
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of the lifting surface or the flexibility of the aerodynamic surface

attachment. In each case, when the attachment was rigid the short

period mode damping remained constant over the speed range studied,

and when the attachment was flexible the short period mode damping

became progressively small as speed was Increased until the short

period mode became unstable at the flutter speed.



Sta. Sta. Sta. Sta.
0 2 900 100

U
dt 4•t

70 In.O n. 60 In.

Notes Stations shown in Inches.

Area of forward surface (total for both sides) - 7000 in.2

Area of aft surface (total for both sides) , 62,4oo In. 2

Figure 18. Configuration 2
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Table I. Mass Distribution for Configuration 2

Mass No. Condition 30 Condition 31
(Figure 20) Station Mass Mass

(in.) I b.-sec.2/i n. I b.-sec 2 /i n.

1 0 4.728 4.728
2 50 18.911 18.911

3 150 18.911 18,911
4 250 31.605 319605
5 350 56,734 18e911
6 450 82.122 27•374
7 550 94.816 31,605

8 650 94.816 31.6o5
9 750 51.812 17.270
t0 900 51.812 17.270
II 1000 189.632 63.210

12 1100 45.854 15.285
13 1200 22.929 7.612

Forward
Surface 250 1.554 1.554

ASurface 900 15.544 15.5.44

Pitching Mass Moment of Inertia

Ib.-sec. I-n. ib.-sec. n.

Forward
Surface 250 iss.. 155.4

ASurface 900 2487. 2487.
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Table 2. Missile Configuration

'Case Fuselage Forward Surface Aft Surface
No * 'Ft Ie~a. Position s.c. PositionN lexibiIlity Inertia Position Area Station in % Chord In % Chord

I Rigid Basic Off - - - 900 50% 50% Basic

2 - -

5 -a-50% __

6 - - 60%

7 _ --- - 900: _ _ __ _

9 --- 1200 60% 50%

10 - -25% 25%

it goo-90 50% 50%
12 Rigid---

13 Basic---

14- -- 900

16 Basic Basic Off - - - 1000 50% 50% Basic

18 Basic Basic Basic Basic 900 50% 50% Basic

19 Basic Basic Basic Basic 900 50% 50% Basic

22 Basic Basic Off --- 850 50% 50% Basic

23 - - 850

24 _____

25 Basic Basic Off Boo-80 50% 50% Basic
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Table 2. Missile Configuration Description of Cases

Aft Surface Air q/_0 at Flutter

e.a, Position a.c. Position Plunge Pitch Plunge Pitch Density Measured Cice III Cale IV
in % Chord In % Chord A'ea Inertia Inertia Flex. Flex.

50% 50% Basic Basic Basic Rigid Basic Basic 2.56 2.80 2.73

Basic x 10 Rigid Basic .66 2.,80 2.24

Basic Basic Basic Rigid 2.26 2.13 2.01

0 Basic Basic Rigid 2.26 2.13 ____

50% Basic 0 Rigid Basic 2.69 2:80

60% Basic Rigid Basic l.II 1,19 1,22

Basic Rigid WO2 2*20 202-4

__ Basic Rigid 2.20 2.11 1.86

60% 50% Rigid Basic 1.10 1.13 1,17

25% 25% Rigid Rigid Basic

50% 50% Rigid Basic X .1 2.97

Basic Basic Rigid x .1 2.53

x .161 Rigid Rigid Basic 1.10 .586

Basic Basic 1.12

I Basic Basic W.16

50% 50% Basic Basic x .161 Rigid Rigid Basic Stable

50% 50% Basic Basic x .161 Basic Basic Basic 1.18

50% 50% Basic Basic x .161 Rigid Rigid Basic 1.17

50% 50% Basic Basic x .161 Rigid Rigid Basic 1.08 .5

Basic Basic 1.09 .493

Basic Basic 1018 .549

50% 50% Basic Basic x .161 Rigid Rigid Basic 1.18 .920
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V1I. CONCLUSIONS

I. An accurate approximation for the aeroelastic behavior of a structure

may be made In terms of Its normal coordinates by Including some of

Its modes explicitly and the "residual flexibility" approximation to

all higher modes. This approximation for the system, derived In

reference I, is applicable in the presence of "mode Interaction".

This conclusion is drawn from the fact that "mode interaction" was

found to depend on only the parameters listed in the foregoing

approximation.

2. In the presence of "mode Interaction," the accurate determination

of "residual flexibility" Is extremely Important. In the presence

of "mode Interaction" the dynamics of a system can be very sensitive

to slight changes in flexibility.

3. Systems which tend toward steady state divergence are particularly

susceptible to "mode Interaction."

4. In most free systems where steady state divergence Is predicted to

occur, a mode interaction or flutter Instability will probably occur

at a velocity lower than that predicted for steady state divergence.

5- Aerodynamic damping terms can have a destabilizing effect on a free

system.

6. Aeroelastic systems which possess no finite frequency normal modes,

can be susceptible to a finite frequency flutter Instability.

84



7. A reliably accurate method for predicting the dynamic response of

a general, free, aeroelastic system must Include consideration of

a. The rigid body modes of the system.

b. The lowest elastic mode of the system.

c. The "residual flexibility" of all higher modes.

d. Aerodynamic damping.

e. Structural damping.

8. Flutter analyses of free systems must Include the zero frequency

modes of the systems.
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APPENDIX

STABILITY BOUNDARIES FOR AN AIRFRAME HAVING TWO
RIGID BODY MODES AND ONE ELASTIC MODE

A brief summary of the analysis of section IV is first presented.

The aeroelastic system of Figure 25 Is characterized by two rigid

body modes and a single elastic mode. It Is assumed that aerodynamic

forces act only upon a rigid lifting surface and that these forces produce

a lift and moment about the aerodynamic center which are given by

L C [ C 1 CL+Q I 11 ~2)Ca 7]L::cL 17 L ÷ -2)L Zec

- S --- --

2LCJ LLq J J

where

q = P P V2 is the dynamic pressure.

CL is the lift coefficient.
a

CL

I - 25i Is the ratio of lift coefficient caused by pitch
La

rate to the lift coefficient caused by angle of attack.

Cm Is the pitch damping moment coefficient.
q

c is the chord length.

s is the Laplace transform differentiation operator d

The equations of motion for the system of Figure 25 can be written

2 L

m r2  - M+ x L

m re 2 ( + (a 2 g) M + (xac - )L

and the motion of the lifting surface is related to the normal coordinates
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z, 0, 4 as follows:

zac z + e c + (Xc- XnJ)9;

Sac g + t

The symbols appearing In these equations have the following

significance:

m Is the total mass of the system (generalized mass of rigid plunge

mode).

m r 2 is the total pitching Inertia about the center of mass (general-

ized mass of rigid pitch mode)*
2

m r e 
Is the generalized mass of the elastic mode when the elastic

mode shape is normalized by making the slope of the elastic mode

unity at the node line.

i 2 is the frequency of the elastic mode.

xac Is the x-coordinate of the aerodynamic center relative to the

coordinate system of Figure 25 (if the aerodynamic center Is behind

the center of mass, then Xac will be negative).

Xrni Is the x-coordinate of the node line of the elastic mode (negative

If the node line Is behind the center of mass).

Analysis of the above system of equations produces the following

resul tst

a. Let wo be a fictitious short period frequency defined by

.7 (p V2 )S CL xacPC a

rL 2 2Cmrxa

Then the system Is neutrally stable whenever the frequency ratio 0
e
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takes on the value given by

2

where

(r v I- 2 + I Cmq

ac) C X L a

I+ I-2- 2
I 2E m r [xn xa -X

I+ + C _ +( ( -2R)+ - -- C-M--

21 ac x ac L a r eL ac xa Xac a

(Xn x 2 )2

ac\ m 
r2bu x ) 2ix~nc ac 1

c'a

2

r"

x e

Xac

I - 2-
Xac

2 c

I M q

X= =

ac L

C

_._2R ac
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The last of these parameters is much less Important than the other five,

and the first two parameters are decisive when the effects of damping

are negligible.

c. If all damping terms are Ignored in the equations of motion,

then a frequency coalescence type of analysis can be applied, with the

following result. Let w ofc be the value of wo at which the system Is

neutrally stable according to frequency coalescence. Then

% -.€¢ I
9 xs -.

I + R x
Xac

In this case we see that the stability boundaries are especially simple,

and only depend upon the first two of the six parameters listed above.

The above conclusions suggest the following as a reasonable approach

to the construction of stability boundaries:

a. Plot 1-.° versus the six parameters listed above. This mode
"ofc

of presentation has the advantage that the frequency coalescence

(a
solution appears as the straight line W j -1 thus, when theCoofc

exact solutions deviate significantly from this line, we know

that we are working In a regime where damping effects are

significant. Since , 0 0 2.e , It follows that the
o Cz Ce ofc le

value of e at neutral stability can be determined from -o
We 'ofC

provided that 0°f Is plotted separately. The latter plot
We

is extremely simple, since °fc depends only upon two param-
e

eters, R and xno "xac Such a plot Is presented In Figure 26.
xac

93



Note that the velocity V corresponding to neutral stability

can be found If the frequency of the elastic mode i Is known,

since
Co • L= Xac

w% - and % -v a

Note that % Is not a function of V, but is the frequency of

the elastic mode In vacuo. If the frequency of Instability ca

Is desired, It can be found from the equation

2 2

() i % -x ac) 2 rx - xac I - 2R I C
re 1+ (9 2  1 2 Cm

Ondac a

be The three parameters R a r x= Na nd r are
, x xo'ýare Xc ac

Important, and wide variation of these parameters must be

taken Into account. We need only consider negative values

of XacD since otherwise the system Is statically unstable.

Cm

c. The ratios of aerodynamic coefficients, (I - 25) and C _
L

will be allowed to take on values characteristic of subsonic

and supersonic conditions. Thus, for subsonic flow (Figures

27 through 35)

I - 2x - .5
C
m71- .0625

La

CL - 6.28
a
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and for supersonic flow (Figures 36 through 144)

1 2R= 0
Cm
,-S = .0625

CL

CL a 1.5
a

If w then allow - Xac to vary over reasonable ranges,I fW•thn • lw dc "

we obtain practical ranges for the aerodynamic stability

parameters

I - 25
Xac

CI CL

ac La
C

do The parameter -- Is not an important one for vehicles
JA xac

moving In air, since the mass parameter

m
Psc

Is apt to be very large and Rac will not be zero for statically

stable vehicles. Thus, It suffices to choose a single value

for 11 (4 = 100). The procedure of c above then determines the

C

range of the parameter-- Figure 45 shows that the effect

C

of varying q by a factor of 100 produces less than V.

Or n except at points near X ac
=5 I
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